International Mathematical Forum, 5, 2010, no. 38, 1849 - 1853

Some Remarks on Mapping from Semigroup
onto Anti-ordered Group
Daniel A. Romano!

Faculty of Education, 76300 Bijeljina
Semberskih ratara Street, Bosnia and Herzegovina
bato49@hotmail.com

Abstract

In this article we investigate the subset H = {z € S : (p(z),1) € 8}
of semigroup S with apartness, the pre-image of the negative cone of
anti-ordered group G by a homomorphism ¢ from semigroup S onto
groups (. This subset is a reflexive completely prime order anti-ideal

of S.
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1 Introduction

Setting of this investigation is Constructive Mathematics in sense of the fol-
lowing books [2], [4] and [5]. The investigation is a continuation of author’s
papers [9]-[12]. In article [12] author describe a construction of anti-ordered
group by given anti-ordered semigroup and embedding the last into the anti-
ordered group: Let ((S,=,#),-,a) be a commutative anti-ordered semigroup
with apartness such that a is closed for the semigroup operation. Then we
can construct an anti-ordered group G that there exists a strongly extensional
isotone and reverse isotone mapping from S into G. Here we have intention
to analyze opposite situation: Let there exists a homomorphism from semi-
group ((S,=,#),-) onto an anti-ordered group G = ((G,=,#),-,3). Then,

there exists a quasi-antiorder relation ¢~ '(8) on S, and an anticongruence
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q=p Y B)U (¢ 1(B))"! on S such that S/q is ordered by anti-order deter-
mined by ¢~!(3) and S/q is isomorphic to the group G. In this situation we
investigate pre-image of negative cone H = {z € S : ((x),1) € 8} of G.

This paper is motivated by a class of Dubreil-Jacotin semigroups, in the
classical Semigroup Theory ([6]): (.5, -, <) is called Dubreil-Jacotin semigroup if
there an isotone semigroup-homomorphism of (S, -, <) onto a partially ordered
group (G, -, 3) such that the pre-image of the negative cone of G is a principal
order ideal of (S, <). This concept was introduced in [8] (see also [1] and [3],
Theorem 12.1).

Let S = ((S5,=,#),-) be a semigroup, G = ((G,=,#),-,1,) an ordered
group under anti-order 3 compatible with the group operationand ¢ : S — G
a strongly extensional epimorphism. We give a version of the Bigard theorem
([1], [3]) where in this situation we describe pre-image of negative cone H of
group (. This subset is a reflexive completely prime order anti-ideal of S.

2 Preliminaries

In this section, following the standard notions and notations in the Construc-
tive Algebra from our articles [9], [10], [11] and [12], readers let us remember
some fundamental notions and facts about (quasi-) anti-ordered sets and semi-
groups.

Let X = (X, =,#) be a set with apartness. For a subset Y of X we say
that it is strongly extensional if y € Y and z € X follows y # = V x € Y for
any x,y € X. For a relation 7 C X x X which is consistent and cotransitive
i.e. that satisfies the following conditions:

T CH#, T CT*T,

where "%’ is the fulfillment operation between relations, we called quasi-antiorder
relation. For a subset Y of quasi-antiordered set X = ((X,=,#),7) we say

that it is an order anti-ideal of X if the following implication (x € Y A y €

X) = ((z,y) € 7 Vy € Y) holds for any z,y € X. If a quasi-antiorder

relation f(C X x X) is linear, i.e. if [ satisfies the following conditions

£ C 371U, we say that it is an anti-order relation on set X and for set X we

sat that it is ordered under this anti-order 3 or that it is anti-ordered under

B. If X = ((S,=,#),) is a semigroup, compatibility of the relation 5 and the

semigroup operation -’ means

(Va,b,x € S)(((az,bx) € B V (xa,zb) € f) => (a,b) € ().

For relation ¢ € X x X we say that it is coequality on X if it is consistent,
symmetric and cotransitive relation on X. In the case, if X = ((S,=,#),")



Remarks on mapping from semigroup onto anti-ordered group 1851

is a semigroup, compatibility of the relation ¢ and the semigroup operation
means

(Va,b,z € S)(((az,bzx) € ¢ V (za,xb) € q) = (a,b) € q).

In that case, the relation ¢ we called anti-congruence on semigroup S. Further
on, for a subset Y of a semigroup S we say that it is a completely prime subset
of S if the following implication ab € Y = a € Y V b € Y holds for any
a,b € S. At least, subset Y of semigroup S is reflexive subset of S if ab € Y
implies ba € Y (a,b € ).

3 Remarks

Remark A:

Let S = ((S,=,#), ) be a semigroup, G = ((G,=,#),-,1,3) an anti-ordered
group compatible with the group operation and ¢ : S — G a strongly ex-
tensional epimorphism. It is known (see [10] and [11]) that ¢~!(53) is a quasi-
antiorder relation on S (see: [10], Lemma 2 or [11], Theorem 4, Point 1),
q = Cokery = {(a,b) € S xS : p(a) # p(b)} is an anticongruence on
S, S/q is ordered by anti-order ©, defined by (aq,bq) € © if and only if
(a,b) € ©'(B) ([10], Lemma 1), and there exists the strongly extensional
mapping 1 : S/q¢ — G, given by ¢(aq) = ¢(a) for any a € S, such that it is
an injective and embedding isotone and reverse isotone homomorphism from
S/q onto Imy (C G).

Remarks B:

If ((G,=,#),-,1) is a group with compatible anti-order relation 8 on G and
¢S — G is a homomorphism from S into G. Let H = {z € S : (p(z),1) €
B}. Then:

(1) H is a strongly extensional subset of S. Indeed: Suppose that a € H
and b € S, i.e. suppose (p(a),1) € § ANb € S. Then, (p(a), o)) €
BV (p(b),1) € B. Thus, by consistency of 5 and strongly extensionality
of ¢, we have a 2b V b€ H.

(2) If BN B~ = 0, H is a subsemigroup of S. In fact, for a € H, we
have ((a), 1) € 6 A (o(b),1) € B. Thus, ((p(a), p(ab) € BV (p(ab), 1) €

B) A (¢(b),1) € B and ((1, (b)) € B A (p(b),1) € B) V (p(ab),1) € §. There-
fore, we have (p(ab),1) € fi.e. abe H.

(3) H is order anti-ideal of S. Indeed: For a € H and b € S, we have

(p(a),1) € Bb € S. Thus, (p(a),p()) € B or (p(b),1) € 8 and (a,b) €
0 1(B) V (¢(b),1) € 3. This means (a,b) € ¢~ 1(8) V b e H.

(4) H is completely prime subset of S because for ab € H, i.e. for (p(ab), )
B, we have (p(a)p(b),¢(b)1) € BV (p(b)1,1) € B. Thus, (p(a),1) € B
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(p(b),1) € B which means a € H V b€ H.

(5) H is reflexive subset of S. Indeed, for ab € H, we have (p(ab),1) € .
This is equivalent with (¢(a)p(b), o(b) " t¢(b)) € B. Thus, (p(a), (b)) € B.
Further on, we have (p(b)~'p(b)p(a), p(b)™') € B. The least we conclude
(p(ba),1) € B, which means ba € H.

Finally, according to remarks mentioned above, we can conclude that the
subset H is a strongly extensional, reflexive, completely prime, order anti-
ideal of S. Especially, if the anti-order § on G satisfies the following condition
BN B~1 =0, then the set H is a subsemigroup of S.

Remark C:

Let  be an arbitrary element of S such that ¢(z) # 1. Then there exists an el-
ement y of S such that ¢(zy) # 1 because ¢ is surjective. Thus, (¢(zy),1) € 8
or (1, p(zy)) € B. From the first case, we havey € [H : x| ={u € S :yu € H}.
In the second case, from (1, p(zy)) € B we have (p(x) 'p(y)~,1) € § and
(o(x)o(y)to(x)te(x),1) € B. Finally, again ¢ is onto, there exists an
element ¢ of S such that ¢(t) = ¢(z) " p(y)Lp(z)~! and we have t € [H : z].
Therefore, for any = € S such that ¢(z) # 1, holds [H : 2] # (). Since ¢ is
surjective, then there exists an element ¢ € S such that ¢(¢t) = 1. Thus, we
conclude (p(t),1) > FU B

Example: Let B be a band, (G, #) an anti-ordered group and let S = B x G
be their direct product with the internal operation "o’ defined by (e, a)o(f,b) =
(ef,ab). Then, the set ((S,=,#),0) is a semigroup. The natural anti-order
v on S is given by ((e,a),(f,b)) € v if (e, f) € a or (a,b) € B where a is a
natural anti-order in band ([7], Lemma 1). Notice that, v is not compatible
with multiplication operation in S, in general. The projection ¢ : S — G,
defined by ¢((e,a)) = a, is a reverse isotone epimorphism because the impli-
cation (a,b) € 8 = ((e,a), (f,b)) € v holds for any e, f € B. Further on, the
relation

v ' (B) ={((e,;a), (f,0)) ;e € B A f€B A (a,b) € B}

is a quasi-antiorder relation on S compatible with the semigroup operation.
So, the relation

© = {((e,a)q, (f,b)q) € S/gx S/q:e € BA f € BA(ab) € B}
is induced anti-order on factor-semigroup S/q, where
q = Coker = {((e,a),(f,b)) :e€ BAf € BAa#b}.

The mapping ¢ : S/q¢ — G is isotone and reverse isotone isomorphism and
the set H = {(¢((e,a)),1) € BxG:e € BA(a,1) € 5} ={(e,a) : (a,1) € 5}

is an negative cone of S.
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